CHEM 110: Chapter 3 Practice Test Questions

Multiple Choice

1) When the following equation is balanced, the coefficients are _____.

 $Al(NO_3)_3 + Na_2S \rightarrow Al_2S_3 + NaNO_3$

A) 2, 3, 1, 6 B) 2, 1, 3, 2 C) 1, 1, 1, 1 D) 4, 6, 3, 2 E) 2, 3, 2, 3

2) When the following equation is balanced, the coefficient of H_2 is _____.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

A) 1 B) 2 C) 3 D) 4 E) 5

3) When the following equation is balanced, the coefficient of HCl is ______.

 $CaCO_3$ (s) + HCl (aq) \rightarrow CaCl₂ (aq) + CO₂ (g) + H₂O (l)

A) 1 B) 2

C) 3

D) 4

E) 0

4) When the following equation is balanced, the coefficient of dinitrogen pentoxide is ______.

$$N_2O_5$$
 (g) + $H_2O(l) \rightarrow HNO_3$ (aq)

A) 1

B) 2 C) 3

D) 4

E) 5

5) Write the balanced equation for the reaction that occurs when methanol, $CH_3OH_{(1)}$ is burned in air. What is the coefficient of methanol in the balanced equation?

A) 1

B) 2 C) 3

- D) 4
- E) 3/2

6) The balanced equation for the decomposition of sodium azide is ______.

- A) 2NaN_3 (s) $\rightarrow 2\text{Na}$ (s) $+3\text{N}_2$ (g)
- B) 2NaN_3 (s) \rightarrow Na_2 (s) $+ 3\text{N}_2$ (g)
- C) $\operatorname{NaN}_3(s) \rightarrow \operatorname{Na}(s) + \operatorname{N}_2(g)$
- D) NaN₃ (s) \rightarrow Na (s) + N₂ (g) + N (g)
- E) 2NaN_3 (s) $\rightarrow 2\text{Na}(s) + 2\text{N}_2$ (g)

7) There are _____ hydrogen atoms in 25 molecules of $C_4H_4S_2$.

A) 25 B) 3.8×10^{24} C) 6.0×10^{25} D) 100 E) 1.5×10^{25}

8) A 2.25-g sample of magnesium nitrate, Mg(NO₃)₂, contains _____ mol of this compound.
A) 38.4
B) 65.8
C) 148.3
D) 0.0261
E) 0.0152

9) What is the empirical formula of a compound that contains 29% Na, 41% S, and 30% O by mass?

- A) $Na_2S_2O_3$
- B) NaSO₂
- C) NaSO
- D) NaSO₃
- E) $Na_2S_2O_6$

10) A compound that is composed of carbon, hydrogen, and oxygen contains 70.6% C, 5.9% H, and 23.5% O by mass. The molecular weight of the compound is 136 amu. What is the molecular formula?

- A) $C_8H_8O_2$
- B) C_8H_4O
- C) C₄H₄O
- D) C₉H₁₂O
- E) $C_5H_6O_2$

3

11) A compound that is composed of only carbon and hydrogen contains 80.0% C and 20.0% H by mass. What is the empirical formula of the compound?

A) C₂₀H₆₀

B) C_7H_{20}

- C) CH_3
- D) C_2H_6
- E) CH₄

12) A compound is composed of only C, H, and O. The combustion of a 0.519-g sample of the compound yields 1.24 g of CO_2 and 0.255 g of H_2O . What is the empirical formula of the compound?

- A) C_6H_6O
- B) C₃H₃O
- C) CH₃O
- D) $C_2H_6O_5$
- E) $C_2H_6O_2$

13) Combustion of a 0.9835-g sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO_2 and 1.070 g of H_2O . What is the empirical formula of the compound?

- A) C₂H₅O
- B) $C_4 H_{10} O_2$
- C) C₄H₁₁O₂
- D) C₄H₁₀O
- E) $C_2H_5O_2$

14) The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :

 $4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$

The combustion of 28.8 g of ammonia consumes ______ g of oxygen. A) 94.9 B) 54.1 C) 108 D) 15.3 E) 28.8 15) The combustion of propane (C_3H_8) produces CO_2 and H_2O :

 C_3H_8 (g) + 5 O_2 (g) \rightarrow 3 CO_2 (g) + 4 H_2O (g)

The reaction of 2.5 mol of O_2 will produce _____ mol of H_2O . A) 4.0 B) 3.0 C) 2.5 D) 2.0 E) 1.0

16) Calcium carbide (CaC_2) reacts with water to produce acetylene (C_2H_2) :

$$CaC_2$$
 (s) + 2H₂O (g) \rightarrow Ca(OH)₂ (s) + C₂H₂ (g)

Production of 13g of C_2H_2 requires consumption of _____ g of H_2O . A) 4.5 B) 9.0 C) 18 D) 4.8×10^2 E) 4.8×10^{-2}

17) Silver nitrate and aluminum chloride react with each other by exchanging anions:

 3AgNO_3 (aq) + AlCl₃ (aq) \rightarrow Al(NO₃)₃ (aq) + 3AgCl (s)

What mass in grams of AgCl is produced when 4.22 g of AgNO₃ react with 7.73 g of AlCl₃?

A) 17.6
B) 4.22
C) 24.9
D) 3.56
E) 11.9

18) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?

$$Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$$

A) 0.113 B) 0.0378 C) 0.429 D) 0.0756 E) 4.57 19) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water.

 $Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$

The yield of MgO is 3.60 g. What is the percent yield in the reaction?

A) 94.5
B) 78.8
C) 46.6
D) 49.4
E) 99.9

20) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

 $4\text{Al}(s) + 3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s)$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O_2 produced 3.5 g of Al_2O_3 . The % yield of the reaction is ______.

A) 74
B) 37
C) 47
D) 66
E) 26

21) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

 $S(s) + 3F_2(g) \rightarrow SF_6(g)$

In a particular experiment, the percent yield is 79.0%. This means that a 7.90-g sample of fluorine yields $______ g$ of SF₆ in the presence of excess sulfur.

A) 30.3
B) 10.1
C) 7.99
D) 24.0
E) 0.110