CHEM 110: Chapter 3 Practice Test Questions

Multiple Choice

1) When the following equation is balanced, the coefficients are \qquad \ldots.

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}+\mathrm{NaNO}_{3}
$$

A) $2,3,1,6$
B) $2,1,3,2$
C) $1,1,1,1$
D) $4,6,3,2$
E) 2, 3, 2, 3
2) When the following equation is balanced, the coefficient of H_{2} is \qquad .

$$
\mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 5
3) When the following equation is balanced, the coefficient of HCl is \qquad -

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) 1
B) 2
C) 3
D) 4
E) 0
4) When the following equation is balanced, the coefficient of dinitrogen pentoxide is \qquad .

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})
$$

A) 1
B) 2
C) 3
D) 4
E) 5
5) Write the balanced equation for the reaction that occurs when methanol, $\mathrm{CH}_{3} \mathrm{OH}_{(1)}$ is burned in air. What is the coefficient of methanol in the balanced equation?
A) 1
B) 2
C) 3
D) 4
E) $3 / 2$
6) The balanced equation for the decomposition of sodium azide is \qquad .
A) $2 \mathrm{NaN}_{3}$ (s) $\rightarrow 2 \mathrm{Na}$ (s) $+3 \mathrm{~N}_{2}$ (g)
B) $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2}(\mathrm{~s})+3 \mathrm{~N}_{2}$ (g)
C) $\mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})$
D) $\mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{N}(\mathrm{g})$
E) $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{~N}_{2}(\mathrm{~g})$
7) There are \qquad hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
A) 25
B) 3.8×10^{24}
C) 6.0×10^{25}
D) 100
E) 1.5×10^{25}
8) A 2.25-g sample of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, contains \qquad mol of this compound.
A) 38.4
B) 65.8
C) 148.3
D) 0.0261
E) 0.0152
9) What is the empirical formula of a compound that contains $29 \% \mathrm{Na}, 41 \% \mathrm{~S}$, and $30 \% \mathrm{O}$ by mass?
A) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
B) NaSO_{2}
C) NaSO
D) NaSO_{3}
E) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
10) A compound that is composed of carbon, hydrogen, and oxygen contains $70.6 \% \mathrm{C}, 5.9 \% \mathrm{H}$, and $23.5 \% \mathrm{O}$ by mass. The molecular weight of the compound is 136 amu . What is the molecular formula?
A) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
B) $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}$
C) $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$
D) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$
E) $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$
11) A compound that is composed of only carbon and hydrogen contains $80.0 \% \mathrm{C}$ and $20.0 \% \mathrm{H}$ by mass. What is the empirical formula of the compound?
A) $\mathrm{C}_{20} \mathrm{H}_{60}$
B) $\mathrm{C}_{7} \mathrm{H}_{20}$
C) CH_{3}
D) $\mathrm{C}_{2} \mathrm{H}_{6}$
E) CH_{4}
12) A compound is composed of only C, H, and O . The combustion of a 0.519 g sample of the compound yields 1.24 g of CO_{2} and 0.255 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$
B) $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
C) $\mathrm{CH}_{3} \mathrm{O}$
D) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{5}$
E) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
13) Combustion of a $0.9835-\mathrm{g}$ sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO_{2} and 1.070 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
B) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
C) $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{O}_{2}$
D) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
E) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}$
14) The combustion of ammonia in the presence of excess oxygen yields NO_{2} and $\mathrm{H}_{2} \mathrm{O}$:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The combustion of 28.8 g of ammonia consumes \qquad g of oxygen.
A) 94.9
B) 54.1
C) 108
D) 15.3
E) 28.8
15) The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ produces CO_{2} and $\mathrm{H}_{2} \mathrm{O}$:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The reaction of 2.5 mol of O_{2} will produce \qquad mol of $\mathrm{H}_{2} \mathrm{O}$.
A) 4.0
B) 3.0
C) 2.5
D) 2.0
E) 1.0
16) Calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water to produce acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

Production of 13 g of $\mathrm{C}_{2} \mathrm{H}_{2}$ requires consumption of \qquad g of $\mathrm{H}_{2} \mathrm{O}$.
A) 4.5
B) 9.0
C) 18
D) 4.8×10^{2}
E) 4.8×10^{-2}
17) Silver nitrate and aluminum chloride react with each other by exchanging anions:

$$
3 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{AgCl}(\mathrm{~s})
$$

What mass in grams of AgCl is produced when 4.22 g of AgNO_{3} react with 7.73 g of AlCl_{3} ?
A) 17.6
B) 4.22
C) 24.9
D) 3.56
E) 11.9
18) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{MgO}
$$

A) 0.113
B) 0.0378
C) 0.429
D) 0.0756
E) 4.57
19) A $3.82-\mathrm{g}$ sample of magnesium nitride is reacted with 7.73 g of water.

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{MgO}
$$

The yield of MgO is 3.60 g . What is the percent yield in the reaction?
A) 94.5
B) 78.8
C) 46.6
D) 49.4
E) 99.9
20) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O_{2} produced 3.5 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The $\%$ yield of the reaction is \qquad
A) 74
B) 37
C) 47
D) 66
E) 26
21) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$
\mathrm{S}(\mathrm{~s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})
$$

In a particular experiment, the percent yield is 79.0%. This means that a $7.90-\mathrm{g}$ sample of fluorine yields $\ldots \mathrm{g}$ of SF_{6} in the presence of excess sulfur.
A) 30.3
B) 10.1
C) 7.99
D) 24.0
E) 0.110

