CHEM 110: Chapter 5 Practice Test Questions

Multiple Choice

1) The kinetic energy of a 7.3 kg steel ball traveling at $18.0 \mathrm{~m} / \mathrm{s}$ \qquad J.
A) 1.2×10^{3}
B) 66
C) 2.4×10^{3}
D) 1.3×10^{2}
E) 7.3
2) Calculate the kinetic energy in joules of an 80.0 g bullet traveling at $300.0 \mathrm{~m} / \mathrm{s}$.
A) 3.60×10^{6}
B) 1.20×10^{4}
C) 3.60×10^{3}
D) 12.0
E) 80.0
3) The $\Delta \mathrm{E}$ of a system that releases 12.4 J of heat and does 4.2 J of work on the surroundings is \qquad J.
A) 16.6
B) 12.4
C) 4.2
D) -16.6
E) -8.2
4) The change in the internal energy of a system that absorbs $2,500 \mathrm{~J}$ of heat and that does $7,655 \mathrm{~J}$ of work on the surroundings is \qquad J.
A) 10,155
B) 5,155
C) $-5,155$
D) $-10,155$
E) 1.91×10^{7}
5) The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is -72 kJ . \qquad kJ of heat are released when 1.0 mol of HBr is formed in this reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

A) 144
B) 72
C) 0.44
D) -36
E) -72
6) The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is -790 kJ . The enthalpy change accompanying the reaction of 0.95 g of S is \qquad kJ.

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A) 23
B) -23
C) -12
D) 12
E) -790
7) The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is +128.1 kJ :

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

How many kJ of heat are consumed when 15.5 g of $\mathrm{CH}_{3} \mathrm{OH}$ (l) decomposes as shown in the equation?
A) 0.48
B) 62.0
C) 1.3×10^{2}
D) 32
E) 8.3
8) The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is -1107 kJ :

$$
2 \mathrm{Ba}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BaO}(\mathrm{~s})
$$

How many kJ of heat are released when 15.75 g of $\mathrm{Ba}(\mathrm{s})$ reacts completely with oxygen to form $\mathrm{BaO}(\mathrm{s})$?
A) 20.8
B) -63.5
C) 114
D) 70.3
E) -35.1
9) A sample of aluminum metal absorbs 9.86 J of heat, upon which the temperature of the sample increases from $23.2^{\circ} \mathrm{C}$ to $30.5^{\circ} \mathrm{C}$. Since the specific heat capacity of aluminum is $0.90 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, the mass of the sample is \qquad g.
A) 72
B) 1.5
C) 65
D) 8.1
E) 6.6
10) The temperature of a $15-\mathrm{g}$ sample of lead metal increases from $22^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$ upon the addition of 29.0 J of heat. The specific heat capacity of the lead is \qquad J/g-K.
A) 7.8
B) 1.9
C) 29
D) 0.13
E) -29
11) The specific heat of liquid bromine is $0.226 \mathrm{~J} / \mathrm{g}-\mathrm{K}$. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from $25.00^{\circ} \mathrm{C}$ to $27.30^{\circ} \mathrm{C}$? The density of liquid bromine: $3.12 \mathrm{~g} / \mathrm{mL}$.
A) 5.20
B) 16.2
C) 300
D) 32.4
E) 10.4
12) $\Delta \mathrm{H}$ for the reaction

$$
\mathrm{IF}_{5}(\mathrm{~g}) \rightarrow \mathrm{IF}_{3}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})
$$

is \qquad kJ , given the data below.
$\mathrm{IF}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{IF}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-390 \mathrm{~kJ}$
$\mathrm{IF}(\mathrm{g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{IF}_{5}(\mathrm{~g}) \quad \Delta \mathrm{H}=-745 \mathrm{~kJ}$
A) +355
B) -1135
C) +1135
D) +35
E) -35
13) Given the following reactions
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-28.0 \mathrm{~kJ}$
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{CO}_{2}(\mathrm{~s}) \rightarrow 4 \mathrm{CO}(\mathrm{g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \quad \Delta \mathrm{H}=+12.5 \mathrm{~kJ}$
the enthalpy of the reaction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ with CO

$$
3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})
$$

is \qquad kJ .
A) -59.0
B) 40.5
C) -15.5
D) -109
E) +109
14) Calculate $\Delta \mathrm{H}^{\circ}$ (in kJ) for reaction 3 .

$$
\begin{array}{ll}
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-790 \mathrm{~kJ} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-297 \mathrm{~kJ}
\end{array}
$$

the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

is \qquad kJ .
A) 196
B) -196
C) 1087
D) -1384
E) -543
15) The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is -186 kJ .

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

The value of $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{HCl}(\mathrm{g})$ is \qquad $\mathrm{kJ} / \mathrm{mol}$.
A) -3.72×10^{2}
B) -1.27×10^{2}
C) -93.0
D) -186
E) +186
16) The value of $\Delta \mathrm{H}^{\circ}$ for the following reaction is -3351 kJ :

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

The value of $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}$ (s) is \qquad kJ.
A) - -3351
B) -1676
C) -32.86
D) -16.43
E) +3351
17) The internal energy of a system is always increased by \qquad .
A) adding heat to the system
B) having the system do work on the surroundings
C) withdrawing heat from the system
D) adding heat to the system and having the system do work on the surroundings
E) a volume compression
18) Which one of the following is an exothermic process?
A) ice melting
B) water evaporating
C) boiling soup
D) condensation of water vapor
E) Ammonium thiocyanate and barium hydroxide are mixed at $25^{\circ} \mathrm{C}$: the temperature drops.
19) Which of the following is a statement of the first law of thermodynamics?
A) $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$
B) A negative $\Delta \mathrm{H}$ corresponds to an exothermic process.
C) $\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}$
D) Energy lost by the system must be gained by the surroundings.
E) $1 \mathrm{cal}=4.184 \mathrm{~J}$ (exactly)
20) For a given process at constant pressure, $\Delta \mathrm{H}$ is negative. This means that the process is \qquad .
A) endothermic
B) equithermic
C) exothermic
D) a state function
E) energy
21) The units of of specific heat are \qquad .
A) K / J or ${ }^{\circ} \mathrm{C} / \mathrm{J}$
B) J / K or $\mathrm{J} /{ }^{\circ} \mathrm{C}$
C) $\mathrm{J} / \mathrm{g}-\mathrm{K}$ or $\mathrm{J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$
D) $\mathrm{J} / \mathrm{mol}$
E) $\mathrm{g}-\mathrm{K} / \mathrm{J}$ or $\mathrm{g}-{ }^{\circ} \mathrm{C} / \mathrm{J}$

