CHEM 110 CHAPTER 4 LECTURE NOTES: <u>PROPERTIES OF AQUEOUS</u> <u>SOLUTIONS</u>

Substances dissolved in water have unique characteristics including the following:

1. <u>Strong vs. Weak Electrolytes</u>:

a. Some substances break down ≈ 100% into ions in H₂O and are termed "strong electrolytes."

<u>Example</u>: HBr_(g) + H₂O \rightarrow H⁺_(aq) + Br⁻_(aq) \approx 100%

HBr is termed a strong electrolyte and a strong acid due to nearly all the HBr separating into ions. H⁺ ions define HBr as an acid (hydrobromic).

b. <u>Weak Electrolytes</u> < 100% break down into ions

<u>Example</u>: $H_2CO_3 + H_2O \rightarrow H^+_{(aq)} + HCO_3 - _{(aq)} < 100\%$

Due to H_2CO_3 (carbonic acid) not separating $\approx 100\%$ into ions, it is termed a weak electrolyte <u>and</u> a weak acid.

Be familiar with precipitation reactions and solubility guidelines for common ionic compounds (pgs. 121 + 122 of text). You will be given an Ion Solubility Table to use for the exam.

Precipitations Reactions are Double Displacement Reactions! <u>Example 1:</u>

silver (I) nitrate + sodium iodide \rightarrow silver (I) iodide + sodium nitrate <u>Balanced Equation:</u>

$$\begin{split} AgNO_{3(aq)} + NaI_{(aq)} &\rightarrow AgI_{(s)} + NaNO_{3(aq)} \\ A^{+}B^{-} + C^{+}D^{-} &\rightarrow A^{+}D^{-} + C^{+}B^{-} \end{split}$$

Overall Ionic Equation:

 $Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)} + Na^{+}_{(aq)} + I^{-}_{(aq)} \rightarrow AgI_{(s)} + Na^{+}_{(aq)} + NO_{3}^{-}_{(aq)}$

Spectator Ions: These do NOT form solid.

Na⁺_(aq), NO₃⁻_(aq)

Net Ionic Equation: Shows ions forming solid.

 $Ag^{+}_{(aq)} + \Gamma_{(aq)} \rightarrow AgI_{(s)}$

Example 2:

potassium sulfate + strontium chloride \rightarrow potassium chloride + strontium sulfate

Balanced Equation:

 $K_2SO_4_{(aq)} + SrCl_{2(aq)} \rightarrow 2KCl_{(aq)} + SrSO_4_{(s)}$

Overall Ionic Equation:

 $2K^{+}_{(aq)} + SO_{4}^{-2}_{(aq)} + Sr^{+2}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow 2K^{+}_{(aq)} + SO_{4}^{-2}_{(aq)} + SrSO_{4(s)}$

<u>Spectator Ions:</u> These do NOT form solid. 2K⁺_(aq), 2Cl⁻_(aq)

<u>Net Ionic Equation</u>: Shows ions forming solid. $Sr^{+2}_{(aq)} + SO_4^{-2}_{(aq)} \rightarrow SrSO_{4(s)}$

ACIDS VS. BASES

2. Acids are substances that produce $H^+_{(aq)}$ ions when placed in H₂O.

<u>Example 1</u>: HNO_{3 (l)} $\xrightarrow{H2O}$ H⁺_(aq) + NO₃-_(aq) <u>Example 2</u>: CH₃COOH_(l) $\xrightarrow{H2O}$ H⁺_(aq) + CH₃COO-_(aq)

3. **Bases** or **Alkalis** are substances that accept $H^+_{(aq)}$ ions from acids and can produce $OH_{(aq)}$ (hydroxide) ions in H_2O .

<u>Example 1</u>: $NH_{2^{-}(aq)} + H^{+}_{(aq)} \rightarrow NH_{3(g)}$ <u>Example 2</u>: $NaOH_{(s)} \xrightarrow{H2O} Na^{+}_{(aq)} + OH_{-(aq)}$

Strong acids and bases break down nearly 100% into ions.

NEUTRALIZATION REACTIONS

4. Acids and bases typically react to form a salt (ionic compound) and H₂O.

<u>Example</u>: KHP (acid) + NaOH (base) \rightarrow KNaP (salt) + H₂O

This is a special type of metathesis (double replacement) reaction.

<u>Net lonic</u>: $H^+_{(aq)} + OH_{(aq)} \rightarrow HOH_{(l)}$ or H_2O

<u>NOTE</u>: The activity series (electromotive series) as related to single replacement reactions is also important to understand.

General Form of Single Replacement Reactions:

 $M1(NM) + M2 \rightarrow M1 + M2(NM)$

where M1 and M2 represent two different metals and NM represents a non-metal ion.

<u>OR</u>

$M(NM1) + NM2 \rightarrow NM1 + M(NM2)$

where NM1 and NM2 represent two different non-metals and M represents a metal ion.

MOLARITY

a) Means of representing the concentration of a solution.

b) Symbol = M

c) Formula for finding:

 $M = \frac{Moles \ of \ Solute}{Liters \ of \ Solution}$

Where moles of solute = $\frac{grams \, of \, solute}{gram \, formula \, (molar)mass}$

NOTE: Liters of solution is the total volume of the solution <u>including</u> the solute added.

Solutions of desired molarity are often prepared accurately in <u>volumetric flasks</u>.

Solution Stoichiometry Methods: See Figure 4.18 of Text for Procedures

Suppose you are given grams of A, but want to find the volume of B needed to react with it.

- First, convert grams of A to moles.
- <u>Second</u>, multiply moles of A by mole ratio of unknown (B): known (A) using balanced chemical equation.
- <u>Last</u>, divide moles of B by molarity of B to obtain liters of B needed to react.

Titration Problems

- Need to balance equation first!
- Determine the volume (convert to L) of titrant added from buret.
- Use L of titrant and molarity of known to determine moles of known.
- Multiply moles of known by mole ratio (from balanced equation) to obtain moles of unknown.
- Convert moles of unknown to desired unit (usually L or grams).
- For liters use M formula; for grams use molar mass.

81 a, b.

Usually acid-base reactions are involved.

- <u>1:1 reaction</u>
- a. $HCIO_4 + NaOH \rightarrow NaCIO_4 + HOH$

2:1 reaction

b. 2 HCl + Mg(OH) \rightarrow MgCl $_{2}$ + 2 HOH