CHEM 110 CHAPTER 4 LECTURE NOTES: PROPERTIES OF AQUEOUS SOLUTIONS

Substances dissolved in water have unique characteristics including the following:

1. Strong vs. Weak Electrolytes:
a. Some substances break down $\approx 100 \%$ into ions in $\mathrm{H}_{2} \mathrm{O}$ and are termed "strong electrolytes."

Example: $\mathrm{HBr}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{Br}^{-}{ }_{(\mathrm{aq})} \approx 100 \%$
HBr is termed a strong electrolyte and a strong acid due to nearly all the HBr separating into ions. H^{+}ions define HBr as an acid (hydrobromic).
b. Weak Electrolytes $<100 \%$ break down into ions

Example: $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{HCO}_{3}{ }_{(\text {(aq) }}<100 \%$
Due to $\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid) not separating $\approx 100 \%$ into ions, it is termed a weak electrolyte and a weak acid.

Be familiar with precipitation reactions and solubility guidelines for common ionic compounds (pgs. $121+122$ of text). You will be given an Ion Solubility Table to use for the exam.

Precipitations Reactions are Double Displacement Reactions!

Example 1:

silver (I) nitrate + sodium iodide \rightarrow silver (I) iodide + sodium nitrate Balanced Equation:

$$
\left.\begin{array}{rl}
\mathrm{AgNO}_{3(\mathrm{aq)}} & +\mathrm{NaI}_{(\mathrm{aq})}
\end{array} \rightarrow \mathrm{AgI}_{(\mathrm{s})}+\mathrm{NaNO}_{3(\mathrm{aq)}}\right)
$$

Overall Ionic Equation:

$\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{I}_{(\mathrm{aq})} \rightarrow \mathrm{AgI}_{(\mathrm{s})}+\mathrm{Na}^{+}{ }_{(\text {aq) }}+\mathrm{NO}_{3}{ }^{-}{ }_{(\text {aq })}$

Spectator Ions: These do NOT form solid.
$\mathrm{Na}^{+}{ }_{\text {(aq) }}, \mathrm{NO}_{3}{ }^{-}{ }^{(\text {aq })}$

Net Ionic Equation: Shows ions forming solid.

$$
\mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{I}_{(\mathrm{aq})} \rightarrow \operatorname{AgI}_{(\mathrm{s})}
$$

Example 2:

potassium sulfate + strontium chloride \rightarrow potassium chloride + strontium sulfate Balanced Equation:
$\mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{SrCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{SrSO}_{4 \text { (s) }}$

Overall Ionic Equation:
$2 \mathrm{~K}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}+\mathrm{Sr}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})}^{-} \rightarrow 2 \mathrm{~K}_{(\mathrm{aq})}^{+}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}+\mathrm{SrSO}_{4(\mathrm{~s})}$

Spectator Ions: These do NOT form solid.
$2 \mathrm{~K}_{(\mathrm{aq})}^{+}, 2 \mathrm{Cl}_{(\mathrm{aq})}^{-}$

Net Ionic Equation: Shows ions forming solid.
$\mathrm{Sr}^{+2}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{-2}{ }_{(\mathrm{aq})} \rightarrow \mathrm{SrSO}_{4}{ }_{\text {(s) }}$

ACIDS VS. BASES

2. Acids are substances that produce $\mathrm{H}^{+}(\mathrm{aq})$ ions when placed in $\mathrm{H}_{2} \mathrm{O}$.

Example 1: $\mathrm{HNO}_{3(\mathrm{l})} \xrightarrow{\mathrm{H} 2 \mathrm{O}} \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3^{-}(\mathrm{aq})}$
Example 2: $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{l})} \xrightarrow{\mathrm{H} 2 \mathrm{O}} \mathrm{H}_{(\text {aq) }}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{-(\mathrm{aq})}$
3. Bases or Alkalis are substances that accept $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ ions from acids and can produce $\mathrm{OH}_{-(\text {(aq) }}$ (hydroxide) ions in $\mathrm{H}_{2} \mathrm{O}$.

Example 1: $\mathrm{NH}_{2}{ }^{-}(\mathrm{aq})+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}$
Example 2: $\mathrm{NaOH}_{(\mathrm{s})} \xrightarrow{\mathrm{H} 2 \mathrm{O}} \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{-(\mathrm{aq})}$
Strong acids and bases break down nearly 100% into ions.

NEUTRALIZATION REACTIONS

4. Acids and bases typically react to form a salt (ionic compound) and $\mathrm{H}_{2} \mathrm{O}$.

Example: KHP (acid) +NaOH (base) $\rightarrow \mathrm{KNaP}($ salt $)+\mathrm{H}_{2} \mathrm{O}$
This is a special type of metathesis (double replacement) reaction.

Net lonic: $\mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{-(\mathrm{aq})} \rightarrow \mathrm{HOH}_{(\mathrm{l})}$ or $\mathrm{H}_{2} \mathrm{O}$

NOTE: The activity series (electromotive series) as related to single replacement reactions is also important to understand.

General Form of Single Replacement Reactions:

$$
\text { M1(NM) + M2 } \rightarrow \text { M1 + M2(NM) }
$$

where M1 and M2 represent two different metals and NM represents a non-metal ion.

OR

$$
\text { M(NM1) + NM2 } \rightarrow \text { NM1 + M(NM2) }
$$

where NM1 and NM2 represent two different non-metals and M represents a metal ion.

MOLARITY

a) Means of representing the concentration of a solution.
b) Symbol $=\mathrm{M}$
c) Formula for finding:

$$
\mathrm{M}=\frac{\text { Moles of Solute }}{\text { Liters of Solution }}
$$

Where moles of solute $=\frac{\text { grams of solute }}{\text { gram formula (molar)mass }}$
NOTE: Liters of solution is the total volume of the solution including the solute added.

Solutions of desired molarity are often prepared accurately in volumetric flasks.

Solution Stoichiometry Methods: See Figure 4.18 of Text

for Procedures

Suppose you are given grams of A, but want to find the volume of B needed to react with it.

- First, convert grams of A to moles.
- Second, multiply moles of A by mole ratio of unknown (B): known (A) using balanced chemical equation.
- Last, divide moles of B by molarity of B to obtain liters of B needed to react.

Titration Problems

- Need to balance equation first!
- Determine the volume (convert to L) of titrant added from buret.
- Use L of titrant and molarity of known to determine moles of known.
- Multiply moles of known by mole ratio (from balanced equation) to obtain moles of unknown.
- Convert moles of unknown to desired unit (usually L or grams).
- For liters use \mathbf{M} formula; for grams use molar mass.
\# 81 a, b.
Usually acid-base reactions are involved.
- 1:1 reaction
a. $\mathrm{HClO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{NaClO}_{4}+\mathrm{HOH}$

2:1 reaction

b. $2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{HOH}$

